If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80d-5d^2=0
a = -5; b = 80; c = 0;
Δ = b2-4ac
Δ = 802-4·(-5)·0
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-80}{2*-5}=\frac{-160}{-10} =+16 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+80}{2*-5}=\frac{0}{-10} =0 $
| 2(x+1/5)+4(x-3/5)=10 | | 80d^2-5d=0 | | 15-8x-3x=x+3 | | -16+5r=2-4r | | 4(x-1)-11x=17 | | p-5p=10-2p | | -2(x+6)+3=-11x+4(x+40 | | 4(2x-6)=3x-24+5x | | 6x-10=4(x+3)= | | -3(8+3m)=-87 | | 4(2x-3)=x-11 | | 12+20x-7=5(4x+2) | | 2(8n+1)=-94 | | 8x-9=2x+7+6x-16 | | 8+3x=7x+8 | | -6(w+3)=-3w-24 | | F(x)=3•2x | | 6x^2-14x+13=0 | | v+8=-2v+4v | | 3(1-7p)=150 | | 6(1+2x)=90 | | 3^x+4=5^8x | | t+25/8=9 | | 9+a/2=17 | | 8x+4=(2x+10 | | 5^x+3=3^2x-3 | | n4=256 | | k/1+9=9 | | (5x)(1)=36 | | F=(-5)10x+3 | | 3n^2+13n+12=0 | | 33n^2+13n+12=0 |